Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Journal of Aerosol Science ; 167, 2023.
Article in English | Scopus | ID: covidwho-2244972

ABSTRACT

Activities such as singing or playing a wind instrument release respiratory particles into the air that may contain pathogens and thus pose a risk for infection transmission. Here we report measurements of the size distribution, number, and volume concentration of exhaled particles from 31 healthy musicians playing 20 types of wind instruments using aerosol size spectrometry complemented with in-line holography in a strictly controlled cleanroom environment. We find that playing wind instruments carries a lower risk of airborne disease transmission than speaking or singing. We attribute this to the fact that the resonators of wind instruments act as filters for particles >10 µm in diameter, which were found in high abundance right after a brass mouthpiece but very rarely at the instrument bell end. We have also measured the size-dependent filtering properties of different types of filters that can be used as instrument masks. Based on these measurements, we calculated the risk of airborne transmission of SARS-CoV-2 in different near- and far-field scenarios with and without masking and/or distancing. We conclude that in all cases where there is a possibility that the musician is infectious, the only safe measure to prevent airborne transmission of the disease is the use of well-fitting and well-filtering masks for the instrument and the susceptible person. © 2022 The Author(s)

2.
Physical Review Applied ; 18(2), 2022.
Article in English | Scopus | ID: covidwho-2018422

ABSTRACT

Clusters of contaminations have been identified within rehearsing choirs during the COVID-19 pandemic. In particular, singing and playing wind instruments are known to generate enhanced release of respiratory droplets, which are then transported by the expiratory flows. By tracking the air exhaled by professional opera singers and musicians from the MET Orchestra in New York City, we measure the spatial extent of the various air flows in opera. While loud singing is often associated with fast flows, professional opera singers and musicians are usually exhaling air flows slower than the air jets exhaled by a person breathing at rest. However, we identify a few situations leading to the release of rapid air jets that are able to enhance the transport of pathogenic droplets within an orchestra. Finally, we show how singing with a facemask and covering the bell of a wind instrument provide a strong reduction of the transport of respiratory droplets, in addition to the filtration features of a mask. © 2022 American Physical Society.

3.
Indoor Air ; 32(6): e13064, 2022 06.
Article in English | MEDLINE | ID: covidwho-1909399

ABSTRACT

The exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument's bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.


Subject(s)
Air Pollution, Indoor , COVID-19 , Respiratory Aerosols and Droplets , Singing , Aerosols/analysis , Air Pollution, Indoor/analysis , COVID-19/transmission , Humans , Music , Pandemics , Respiratory Aerosols and Droplets/virology
4.
Indoor Air ; 31(6): 1798-1814, 2021 11.
Article in English | MEDLINE | ID: covidwho-1268113

ABSTRACT

The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.


Subject(s)
Air Movements , Singing , Air Pollution, Indoor , COVID-19 , Humans
5.
J Aerosol Sci ; 151: 105669, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-764955

ABSTRACT

The potential airborne transmission of COVID-19 has raised significant concerns regarding the safety of musical activities involving wind instruments. However, currently, there is a lack of systematic study and quantitative information of the aerosol generation during these instruments, which is crucial for offering risk assessment and the corresponding mitigation strategies for the reopening of these activities. Collaborating with 15 musicians from the Minnesota Orchestra, we conduct a systematic study of the aerosol generation from a large variety of wind instruments under different music dynamic levels and articulation patterns. We find that the aerosol concentration from different brass and woodwinds exhibits two orders of magnitude variation. Accordingly, we categorize the instruments into low (tuba), intermediate (bassoon, piccolo, flute, bass clarinet, French horn, and clarinet) and high risk (trumpet, bass trombone, and oboe) levels based on a comparison of their aerosol generation with those from normal breathing and speaking. In addition, we observe that the aerosol generation can be affected by the changing dynamic level, articulation pattern, the normal respiratory behaviors of individuals, and even the usage of some special techniques during the instrument play. However, such effects vary substantially for different types of instrument, depending on specific breathing techniques as well as the tube structure and inlet design of the instrument. Overall, our findings can bring insights into the risk assessment of airborne decrease transmission and the corresponding mitigation strategies for various musical activities involving wind instrument plays, including orchestras, community and worship bands, music classes, etc.

SELECTION OF CITATIONS
SEARCH DETAIL